EE419 Reference for Final Exam

- **Discrete Signal**: \(x(n) = x_a(t = nT) = x_a(t = n/F_s) \)
- **Sampling Theorem**: \(F_s >= 2B \) for no aliasing (theoretically)
 \(w_0 = 2\pi F_0 / F_s \)
- **Difference Equation**: \(y(n) = \sum_{k=0}^{M-1} b_k x(n-k) - \sum_{k=1}^{N-1} a_k y(n-k) \)
- **DTFT**: \(x(n) \xleftarrow{\text{DTFT}} X(w) \), \(X(w) = \sum_{n=-\infty}^{\infty} x(n)e^{-jwn}, -\pi <= w <= \pi \)
- **I-DTFT**: \(x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega \)
- **Frequency-Shift Property of DTFT**: Given \(h(n) \xleftarrow{\text{DTFT}} H(w) \), Then \(e^{j\omega_0 n} h(n) \xleftarrow{\text{DTFT}} H(w - \omega_0) \)
- **DFT**: \(x(n) \xleftarrow{\text{DFT} (N)} X(k) \), \(X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N} \) with \(k = 0, N-1 \)

 Associated analog frequencies = \(F_k = k\Delta F = k F_s/N \)
- **I-DFT**: \(x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j2\pi kn/N}, n = 0, N-1 \)
- **Z Transform**: \(x(n) \xleftarrow{\text{Z}} X(Z) \), \(X(Z) = \sum_{n=0}^{\infty} x(n)z^{-n} \)
- **Spectral Spacing**: \(\Delta F = F_s / N \)
- **Spectral Resolution**: \(\Delta F = F_s / L \)
- **Spectral Leakage**: None observed, if \((F_0 N) / F_s \) = integer
- **Eular’s Law**: \(e^{j\theta} + e^{-j\theta} = 2\cos\theta \), \(e^{j\theta} - e^{-j\theta} = j2\sin\theta \)
- **Geometric Series**: \(\sum_{n=0}^{N-1} a^n = \frac{1-a^N}{1-a}, a \neq 1 \)
- **Group Delay**: \(g = \frac{-d < H(w)}{dw} \) (samples)
- **Impulse response of an ideal, shifted low pass filter, odd length M**: \(h(n) = \sin[w_c (n - (M-1)/2)] / [\pi (n - (M-1)/2)] \), for n != (M-1)/2
 \(h(n) = w_c / \pi \), for n = (M-1)/2
- **Hamming window**: \(w(n) = 0.54 - 0.46 \cos[2\pi n / (M-1)] \)
- **Frequency sampling method**: \(w_k = k \cdot 2\pi / M \), \(<H_d(w_k) = -g w_k \), \(g = (M-1)/2 \)
- **Impulse response for system with 2nd order poles at** \(r e^{j\omega_0} \)
 \(h(n) = r^n [A \cos \omega_0 n + B \sin \omega_0 n] u(n) \), and for 1st order: \(h(n) = a^n u(n) \)
- **Bilinear Transform**: \(s = \frac{2 (1-z^{-1})}{T (1+z^{-1})} \)
Areas suggested for review, in addition to items on the reference sheet:

- Model of sampling process
- Aliasing
- Zero padding
- Relationships between: F (Hz) <-> w (rads/sample) <-> k (sample index)
- Frequency response and impulse response, h(n) <-> DTFT -> H(w)
- Relationship between H(w) and H(z)
- Graphical method of finding |H(w)|
- Identify if a system is FIR or IIR
- H(z) and associated poles and zeros, and p/z plots
- Relationship between H(z) and the difference equation
- General form of H(z) for 1st and 2nd order systems with complex p/z
- General form of h(n) for 1st and 2nd order systems with complex poles
- Comparing DFT and FFT
- Reading FFT Butterfly diagram
- Transforming a filter structure into an equivalent difference equation
- Filter design by pole/zero placement, yielding a causal filter.
- Filter design by windowing method
- Filter design by frequency sampling
- Filter design by bilinear transform
- Transforming digital filters from low pass to high pass
- Group delay
- Fundamental question on DaDISP, MatLab, CCS, or lab procedures.
- Review Homework, Labs, Reading
- Exam Cumulative!