This method uses a least-squares formulation to fit N planar data points (x_i, y_i) to a circle. The error in radius is minimized (as opposed to the error in a single coordinate – as with line fitting via linear regression). An assumption is made in this version that the input data points arrive in pairs that have the same x coordinate. A constant separation between the data points (in the x direction) is not assumed. The technique computes center, (x_c, y_c), and radius, r, of the circle.

The y coordinate of the center of the circle, y_c, may be computed directly, simply by averaging the N given y_i data points.

$$y_c = \frac{1}{N} \sum_{i} y_i$$

The y coordinates may then be re-expressed with respect to y_c, by defining

$$\tilde{y}_i = y_i - y_c$$

If the raw data points (x_i, y_i) fit the circle reasonably well, then

$$(x_i - x_c)^2 + \tilde{y}_i^2 \approx r^2$$

expanding this

$$x_i^2 - 2x_c x_i + x_c^2 + \tilde{y}_i^2 \approx r^2$$

and rearranging to help identify unknowns gives

$$(-2x_i)(x_c) + (x_c^2 - r^2) \approx -\tilde{y}_i^2 - x_i^2$$

which permits a vector product to be written as

$$\begin{bmatrix} -2x_i & 1 \\ x_c & x_c^2 - r^2 \end{bmatrix} \approx \begin{bmatrix} -\tilde{y}_i^2 - x_i^2 \end{bmatrix}$$
This vector product may be used to setup each row of a matrix equation $A z = b$ as in

\[
\begin{bmatrix}
-2x_1 & 1 \\
-2x_2 & 1 \\
\vdots & \vdots \\
-2x_N & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_c \\
x_c^2 - r^2 \\
\vdots \\
x_c^2 - r^2 \\
\end{bmatrix}
\approx
\begin{bmatrix}
-\tilde{y}_1^2 - x_1^2 \\
-\tilde{y}_2^2 - x_2^2 \\
\vdots \\
-\tilde{y}_N^2 - x_N^2 \\
\end{bmatrix}
\]

which may be solved by least-squares.

A shortcoming of this approach is that the radius, r, is not an explicit unknown. (It does not appear as an isolated component in the vector z, above). Hence errors in the input data (x_i, y_i) result in an optimal choice for $(x_c, x_c^2 + r^2)$; rather than for (x_c, r). Monte Carlo simulations have shown that this does not appear to have a significant effect, for expected noise conditions. In fact the simulations demonstrated a reduction in the standard deviation of the radial error by a factor of 2.5, compared to the standard deviation of the noise in the (x_i, y_i) data points. This test was run for N=8 data points.