Definitions of Basic Terms
Commonly Used in Digital Signal Processing
Dr. Fred DePiero

- **S**, Sample Rate, The number of samples per second acquired during the sampling process.
- The Sampling Theorem states that a signal with bandwidth B can be recovered from its samples if \(S > 2B \).
- **\(f_{\text{FOLD}} \)**, Folding Frequency (Hertz), \(f_{\text{FOLD}} = \frac{S}{2} \).
- **A/D**, Analog-to-Digital converter. Changes an analog signal \(x_a(t) \) to a digital signal \(x[n] \) (a sequence of numbers). Conversions are performed at the rate \(S \). Real A/Ds generate integers for \(x[n] \). Because integers are quantized in intensity such signals are referred to as ‘digital’ signals. Often the intensity quantization is ignored (to simplify analyses) in which case \(x[n] \) is a ‘discrete signal’ (discrete in time, not in amplitude).
- **D/A**, Digital-to-Analog converter, Performs the inverse operation of an A/D.
- **\(f \)**, Analog Frequency (Hertz)
- **\(F \)**, Digital Frequency (cycles/sample). \(F_0 = \frac{f_0}{S} \).
- **\(t_s = \frac{1}{S} \)**, Sample Spacing (sec), the spacing in time between adjacent samples of \(x[n] \)
- **\(N \)**, Number of samples associated with DFT or FFT transforms. (There are other uses of ‘\(N \)’ also).
- **\(\Delta f = \frac{S}{N} \)**, Frequency Spacing (Hertz), spacing along the analog frequency axis between adjacent samples \(X(k) \), as computed via a DFT or FFT.
- **\(\Delta F = \frac{1}{N} \)**, Frequency Spacing (cycles/sample), spacing along the digital frequency axis between adjacent samples \(X(k) \), as computed via a DFT or FFT.
- **Spectral Spacing**, Same as frequency spacing.
- **Spectral Leakage**, A phenomena that causes blurring in the spectrum of a signal. Spectral leakage always occurs for finite-length versions of signals, compared to their infinite-length versions. However, spectral leakage may not be observed in the samples \(X(k) \) of a DFT. Spectral leakage will not be observed for a sinusoid at frequency \(f_0 \), if \(f_0 N / S \) is an integer.
- **Zero Padding**, the process of adding zeros at the end of a signal to increase the overall length. For example, if \(L \) samples of a signal are acquired and \(M \) zeros added, then the total length is \(N = L + M \). This provides a better (smaller) \(\Delta F \).
- **\(\Delta F_r \)**, Spectral resolution, the minimum separation in frequency between two sinusoids that permits the two individual sinusoids to be distinguished (or ‘resolved’) in a spectrum. For a zero-padded signal \(\Delta F_r = \frac{1}{L} \), and \(\Delta F = \frac{1}{N} \).