Review for Final: CPE 329 Fall 2007

- Lectures 1-14, Therac-25, Chapters 1 & 2, Labs 1-5
- Exam Review Outlines
- Homework problems
- ISE/EDK technology
- Digilent Nexys board and peripherals technology
 - Not held accountable for specifics of Digilent D2FT-DIO5 technology, just principles
- No coding, just pseudo code (no syntax)
- One page (both sides) of reference notes
- Calculator
Exam Review Outline: lecture 1

CPE 329 Overview

• Course Description
• Course Learning Objectives
• Topics Covered
• Prerequisite material
• Course Material
• Lab Overview
 – Development Environment (CAD Tools)
 – Lab Equipment
 – Processor
• Lab Experiments
 – Experiment 1 Hardware-Based Digital Clock
 – Experiment 2 MicroBlaze “Hello World!”
 – Experiment 3 Microcontroller-Based Digital Clock
 – Experiment 4 Function Generator
 – Experiment 5 Final Design Project
Exam Review Outline: lecture 2
Introduction to Digital Systems

- **Taxonomy of Digital Systems**
 - Advantages and Disadvantages of each category (Cost, performance, ease of design, customization, configurability, integration, number of transistors)

- **Semiconductor Technology Trends**
 - Moore’s Law Number of transistors per die doubles every couple of years (historical data)
 - ITRS Future Projection
 - Increase in the number of practicing engineers per year
 - Must work at higher levels of abstraction
 - Increasing levels of abstraction for HW and SW
 - Hardware Software Co-design
Exam Review Outline – lecture 3

Programmable Logic

• History of Integrated Circuits
• Advantages of CPLDs
• Programmable Elements to connect nets or configure hardware devices
 - One-time-programmable (OTP) – Fuse/Antifuse
 - Re-programmable
 • Volatile (SRAM)
 • Non-Volatile (EEPROM, Flash)
• CPLD Architecture Functional Blocks
 - SPLD like configurable logic
 • MacroCell
 • MacroBlock
 - Programmable Interconnect
 - I/O Blocks
• FPGA Architecture
 - FPGA Fabric
 • Configurable Logic Block (Programmable MUX, Look Up Table, Pass Transistor)
 • Programmable Interconnect
 • I/O Blocks
 • Block RAM Memory
 • Hardcore blocks (ie Multipliers, PowerPC)
 - System on Chip (Soc) using Hardcore or Softcore Processors
Exam Review Outline

- **Programmable Interconnect (6-transistor junction)**
 - Direct – CLB to CLB
 - Local
 - Global
 - Timing - Clock networks

- **Propagation delay timing for interconnect 1st order model**
 - Wired interconnect t_{PLH}
 - Programmable interconnect t_{PLH}

- **Design Example of 8-bit Ripple Carry Adder**
 - CPLD Design
 - Full Adder
 - FPGA Design
 - 2-bit adder subcomponent
 - LUT programming (Combining LUTs for more input variables)
 - Programmable interconnect
 - Adder Using VHDL
Exam Review Outline

- **Design Flow**
 - Designer
 - Write HDL Code
 - Simulate
 - Constraints
 - CAD Tool
 - Synthesis
 - Translate/Map
 - Place and Route
 - Generate Programming File
 - Download bit file
- **Xilinx FPGA and CPLD**
 - Spartan IIE FPGA Architecture
 - FPGA Fabric
 - I/O Block
 - CLB and CLB Slice
 - Product Family
 - CoolRunner XPLA3 Architecture
 - Features
 - Architecture Block Diagram
 - PLA Logic Inputs
 - Logic Block (MacroBlock)
 - I/O Cell
 - MacroCell
 - Timing Model
- **Xilinx Spartan 3 – Nexys Board**
Exam Review Outline – lecture 4
Embedded Systems and MicroBlaze Computer System

- Computer Systems, Processors, and Terminology
 - Custom HW - ASIC, VLSI, ...
 - Processor vs. Microprocessor
 - Microcomputer vs. Microcontroller
 - Embedded system design process
 - Requirements
 - Specifications
 - Architecture
 - Components
 - System Integration
 - Embedded System
 - Characteristics: Complex Algorithms, user interface, real-time, multi-rate
 - Costs: Cost of goods, mfg cost, development cost
 - Challenges
 - Hardware performance vs. Cost
 - Code Space/ Code Density
 - Need to meet real-time demands
 - Minimize power consumption
 - Design for upgrade-ability
 - Verification
 - Reliability
Exam Review Outline

- **Embedded Systems Continued**
 - Computer System Block Diagram
 - System on Chip - SoC
 - Processor in ASIC or FPGA with Softcore processor
 - Programmers model - Registers, Condition Codes and Instruction Set Architecture
 - Why is it important to know ISA?
 - Computer Classification
 - Architecture
 - Von Neuman / Princeton Architecture
 - Harvard Architecture
 - DSP’s
 - RISC vs. CISC

- **EDK computer system**
 - MicroBlaze Processor
 - Busses (ILMB, DLMB, IOPB and DOPB)
 - MicroBlaze Memory System
 - Memory Controllers and BRAM
 - Memory Mapped I/O
 - IP Cores
 - GPIO Programming Input and Output Devices
Exam Review Outline

- Base Address
- Memory Mapped Registers (Data Register and Data Direction Register)
- I/O Instructions
 - Software functions to read and write MicroBlaze memory locations
 - `Xio_In32();` and `Xio_Out32();`
 - `xparameters.h` and `xio.h`
 - DIO5 I/O Controller
 - Bus Based Interface Between FPGA and I/O Controller
 - Computer System
 - Bus Write Cycle
 - Timing Diagram
 - Algorithm to implement using GPIO and MicroBlaze
 - DIO5 Memory Map of I/O Devices
 - LCD initialization Routine
 - LCD Display Characters
 - Nexys interface to LCD and peripherals (buttons and leds)
Exam Review Outline – lecture 5
Xilinx Embedded Developers Kit

- Embedded Developers Kit Design Flow
 - Hardware System
 - Add Cores
 - Bus Connection
 - Memory Map
 - Port Connections
 - Parameters
 - User Constraints
 - Software System
 - Device Driver Interface (Xio_Out, Xio_In, …)
 - Main Code using “C”
 - Compile
 - Generate Bitstream
 - Update Bitstream
 - Download code
Exam Review Outline – lecture 6

MicroBlaze Instruction set, Architecture, Performance, and Interrupts

- **MicroBlaze**
 - Programmers Model
 - Data Types
 - Instruction Set
 - Program Counter and Machine State Register
 - General Purpose Registers
 - Instruction formats

- **Big Endian / Little Endian**

- **Pipelining**
 - Overlapped execution
 - Performance (Latency, throughput, IPC, and CPI)
 - MicroBlaze Pipeline (F->D->Execute)
 - Data Dependency Hazards
 - Control Hazards
 - Delayed Branches
Timers and Counters

Interrupts
- Asynchronous event that allows device to interrupt CPU and transfer control over to an interrupt service routine.
- Foreground task (main loop)
- Interrupt Service Routing (ISR) or Interrupt Handler
- Interrupt and Acknowledge
- Hardware interface for interrupt
- Interrupt process at HW level
 - CPU initializes and enables interrupt device and unmasks interrupts
 - External Interrupt request generated
 - Possibly on chip peripheral device
 - Possibly external device
 - CPU typically finishes current instruction
 - Some instructions are interruptible
 - Some CPU’s perform HW context save (if not context save is responsibility of ISR)
 - CPU’s typically disable interrupts automatically
 - Return address stored (on stack or in dedicated register)
 - Branch to interrupt service routine: Fetch Interrupt Vector (address of interrupt service routine) or address of instruction in jump table and put this address into the PC
 - Execute the interrupt service routine
 - ISR must clear interrupt flag (acknowledge interrupt)
 - Restore Context if not handled in HW
 - RTI - Return from interrupt instruction: Restores CPU context including condition codes and Branches to return address

- Debugging with interrupts
- Multiple Interrupts and Interrupt Priorities
- Maskable vs. Non-Maskable interrupts
- Handling multiple interrupts using an OR gate
- Interrupt controllers and multiple interrupt devices
- Interrupt overhead
- Comparison of Interrupts to Polling algorithms
Exam Review Outline – lecture 8
Digital-to-Analog Conversion and Analog-to-Digital Conversion

• Sampling theory
 – Sampling Frequency
 – Resolution

• Analog-to-Digital Converters
 – Sample and Hold
 – Summing op-amp circuit

• Digital-to-Analog Converters
 – Analog Devices AD7303 Architecture
 – AD7303 IP Core and device drivers
 – Software for digital-to-analog conversion
 – Digilent AIO1 Interface Board setup and schematic

• Interfacing Sensors
 – Resolution and Selection of V_{REF}
 – ADC digital output
 – LM35 Temperature Sensor
Exam Review Outline – lecture 9
Serial I/O and Programming Input and Output

- Data Management
 - FIFO
 - Stack
 - Software Implementation of FIFOs and Stacks
- I/O Algorithms for UART with Keyboard and Monitor Algorithm
 - I/O with busy waiting and Memory Mapped I/O
 - How it works
 - Algorithm (flow chart)
 - C code implementation
 - I/O with interrupts
 - I/O Buffer Queue
 - With separate input and output device interrupt handlers that can run at different speeds we need a place to store incoming data.
 - FIFO or circular queue
 - Head and tail pointers
 - Storing and removing characters
 - Queue empty, queue full, number of characters in queue
 - How it works
 - Algorithm (flow chart)
 - C code implementation
 - Task processing with ISRs
Exam Review Outline – lecture 10
Other I/O Devices

- Switches and Pushbuttons to digital logic (circuit and resistance)
- Debouncing Switches and Pushbuttons
 - SR latch
 - RC filter
 - Software Debounce algorithm
- Keypad
 - Direct wired keypad
 - Matrix keypad
 - Operation
 - benefit
- Keyboard
- PC Keyboard (microcontroller, serial interface, scan codes)
 - PS2 port
 - Bidirectional Clock and data
 - Master Slave
 - Communication with Keyboard and Host
 - Timing diagram
- Scanned Keyboard: Benefits and Issues
- Mouse
 - Unidirectional
 - Timing diagram
- Touch-screen Displays
 - Vertical and Horizontal Position
Exam Review Outline

- LEDs
- I-V Characteristics
- Circuit and current limiting resistor
- 7-Segment Displays
 - 7-segment code
 - Circuit elements
 - Raster scan
- Cathode Ray Tube (CRT)
- Directly driven (Data, Horizontal and Vertical Deflection)
- Frame buffer device driver
- VGA Controller
 - Interface/Connector
 - Video RAM
- Character LCD Displays
 - Controller and LCD
 - Addressing Modes
 - ASCII Characters
 - DRAM Buffer
 - Font Table
 - Hardware interface
- Graphical LCD Displays
 - Pixel by Pixel Control RGB
Exam Review Outline – lecture 11

Other Peripheral Devices: External Memory controller and Serial Peripheral Interfaces

• External memory controllers
 - SRAM structure
 - SRAM memory block – data-in and data-out busses, bidirectional data bus
 - Memory read and write signals – proper assertion of control signals
 - OPB EMC core
 • Parameter configuration
 • Register model
 • Timing of read and write cycles

• Serial peripheral Interface
 - Four concepts: Serial, synchronous, Master-slave protocol, data exchange
 - IO signals
 - Master-slave configuration
 - SPI mode
 • Clock polarity
 • Clock phase
 - OPB SPI core
 • SCK, slave select, MOSI, MISO signals
 • Register model
Exam Review Outline – lecture 12

Power Consumption and Energy

- Heat Generation depends on Power Consumption
- Battery Life depends on Energy Consumption
- In CMOS what causes power consumption
 - Static
 - Leakage Current
 - Sub Threshold Current
 - Passive Current dissipation
 - Dynamic
 - Switching Current
 - Charging and Discharging Capacitive loads
- \[P_{\text{cap}} = \alpha C_{\text{eff}} V_{\text{dd}}^2 f, \quad E_{\text{cap}} = \alpha C_{\text{eff}} V_{\text{dd}}^2 \]
- Methods to Reduce Power and Energy Consumption
- Power management
 - Static
 - Dynamic
 - Power management state machines
 - StrongARM Example
Exam Review Outline – lecture 13

Survey of Microcontroller Market and Common Microcontrollers

• Microcontroller market segments
• Microcontrollers vs. Microprocessors
• Market analysis
• Alternate Microcontroller Devices
 – PIC
 – Atmel
 – Mot HC12
 – Mot 68000
• DSPs
 – Applications
 – What is a digital signal processor
 – TMS 320
 – DSP5600
Exam Review Outline – lecture 14
Ethics in Engineering

- IEEE Code of Ethics
- Engineering ethics issues
 - Cheating
 - Responsibility
 - Scapegoating
 - Intellectual Property
 - Whistle Blowing
 - Outsourcing
 - Layoffs
 - Engineering integrity
 - Conflict of interests
 - Gifts
 - Product Readiness
 - Discrimination
- Therac-25 Case
 - Players
 - Incidents
 - In-class group discussion
Laboratory Review

- Lab 1 Digital Clock Design Using Programmable Logic and VHDL
 - Nexys/ISE tutorial exp 0
 - Review of VHDL and Xilinx ISE, MicroSim
 - Digital clock requirements
 - Development process
 - Laboratory procedures
Laboratory Review

- Lab 2 MicroBlaze “Hello World” and Embedded Development Kit (EDK)
 - EDK 9.1i-nexys board tutorial
 - “C” programming review
 - GPIO
 - Interface to LCD
 - Documentation
 - Interface protocol
 - Timing diagram
Laboratory Review

- Lab 3 MicroBlaze Digital Clock and the Embedded Development Kit
 - Timer/counter peripheral
 - Interrupts
 - Nexys buttons
 - Use of LCD driver code
 - Demo: testing <-> specifications
Laboratory Review

- Lab 4 MicroBlaze Function Generator Design
 - SPI
 - PMOD DA2
 - Analog instrumentation for verification
 - Reuse of C code, peripherals
Laboratory Review

• Lab 5 Computer Application Final Design Project
 – Additional peripheral interface: ADC, PS/2
 – Additional interface protocols
 – Building on knowledge gained in previous labs
 – Demonstrate ability to find interface information
 – Hardware/software tradeoff in design
 – Minimal hardware/software resources
 – “C” coding style
 – Oral presentation
 – Proper embedded system project documentation